Ultrafast excited-state charge-transfer dynamics in laccase type I copper site.
نویسندگان
چکیده
Femtosecond pump-probe spectroscopy was used to investigate the excited state dynamics of the T1 copper site of laccase from Pleurotus ostreatus, by exciting its 600 nm charge transfer band with a 15-fs pulse and probing over a broad range in the visible region. The decay of the pump-induced ground-state bleaching occurs in a single step and is modulated by clearly visible oscillations. Global analysis of the two-dimensional differential transmission map shows that the excited state exponentially decays with a time constant of 375 fs, thus featuring a decay rate slower than those occurring in quite all the investigated T1 copper site proteins. The ultrashort pump pulse induces a vibrational coherence in the protein, which is mainly assigned to ground state activity, as expected in a system with fast excited state decay. Vibrational features are discussed also in comparison with the traditional resonance Raman spectrum of the enzyme. The results indicate that both excited state dynamics and vibrational modes associated with the T1 Cu laccase charge transfer have main characteristics similar to those of all the T1 copper site-containing proteins. On the other hand, the differences observed for laccase from P. ostreatus further confirm the peculiar hypothesized trigonal T1 Cu site geometry.
منابع مشابه
Ultrafast Pump-Probe Studies of Excited-State Charge-Transfer Dynamics in Blue Copper Proteins
We report the results of ultrafast pump-probe measurements on three blue copper proteins: spinach plastocyanin, poplar plastocyanin, and human ceruloplasmin. Electronic population dynamics and vibrational coherences involving d f d transitions of the blue copper active site are observed using both wavelengthintegrated and wavelength-resolved detection. Depending on the protein and the method of...
متن کاملUltrafast structural flattening motion in photoinduced excited state dynamics of a bis(diimine) copper(I) complex.
The ultrafast photoinduced structural change dynamics of a prototypical Cu(I) complex, namely, [Cu(dmp)2](+) (dmp = 2,9-dimethyl-1,10-phenanthroline), is investigated based on the theoretical analysis of static and dynamical calculations at the all-atomic level. This work mainly focuses on the intriguing structural flattening features of [Cu(dmp)2](+) occurring in the metal-to-ligand charge tra...
متن کاملPhotochemistry of monochloro complexes of copper(II) in methanol probed by ultrafast transient absorption spectroscopy.
Ultrafast transient absorption spectra in the deep to near UV range (212-384 nm) were measured for the [Cu(II)(MeOH)(5)Cl](+) complexes in methanol following 255-nm excitation of the complex into the ligand-to-metal charge-transfer excited state. The electronically excited complex undergoes sub-200 fs radiationless decay, predominantly via back electron transfer, to the hot electronic ground st...
متن کاملSimulations of the Ultrafast Transient Absorption Dynamics of a Donor-Acceptor Biaryl in Solution.
A model for simulating the transient electronic absorption spectra of donor-acceptor dyads undergoing ultrafast intramolecular charge transfer in solution has been developed. It is based on the stochastic multichannel point-transition approach and includes the reorganization of high-frequency intramolecular modes (treated quantum mechanically) and of low frequency intramolecular and solvent mod...
متن کاملElectron solvation in finite systems: femtosecond dynamics of iodide. (Water)n anion clusters
Electron solvation dynamics in photoexcited anion clusters of I-(D2O)n=4-6 and I-(H2O)4-6 were probed by using femtosecond photoelectron spectroscopy (FPES). An ultrafast pump pulse excited the anion to the cluster analog of the charge-transfer-to-solvent state seen for I- in aqueous solution. Evolution of this state was monitored by time-resolved photoelectron spectroscopy using an ultrafast p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical chemistry
دوره 200-201 شماره
صفحات -
تاریخ انتشار 2015